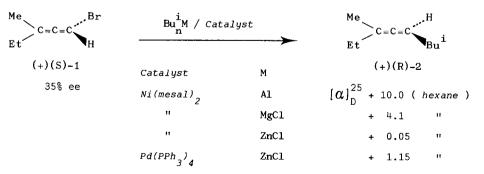
## METAL CATALYSIS IN ORGANIC REACTIONS. 18.

## STEREOCHEMISTRY OF THE TRANSITION-METAL CATALYZED CROSS-COUPLING OF (S)-1-BROMO-3-METHYL-1,2-PENTADIENE WITH ISOBUTYLMETAL COMPOUNDS.


Anna Maria Caporusso, Luciano Lardicci, and Federico Da Settimo

Dipartimento di Chimica e Chimica Industriale dell'Università Centro di Studio del CNR per le Macromolecole Stereordinate ed Otticamente Attive Via Risorgimento, 35 - 56100, Pisa (ITALY).

Summary : The stereochemical course of Ni- and Pd-catalyzed reactions of (+)(S)-1 with isobutylmetal reagents has been elucidated by preparing the allene (+)-2 via an *anti* stereoselective transformation of the propargylic acetate (+)(R)-4 with organocuprates.

In a recent paper<sup>1</sup> we reported an efficient synthesis of trisubstituted allenes by Ni-catalyzed reactions of 3,3-dialkyl-1-bromoallenes with typical organometallic reagents,  $R_n^M$ , containing Mg, Zn, and Al. We proposed that the stereochemical course of such conversions proceed with prevalent inversion in the allenyl moiety.<sup>1</sup> The results obtained in the reactions between (+)(S)-1<sup>2</sup> and isobutylmetal compounds in the presence of bis(N-methylsalicylaldimine) nickel, Ni(mesal)<sub>2</sub>, showed also that the degree of stereoselectivity depends upon the nature of the organometallic reagent employed (Scheme 1).<sup>1</sup> The *anti* stereochemistry of the process was based on the absolute R configuration assigned to dextrorotatory 3,7-dimethyl-3,4-octadiene, (+)-2, by relating this compound to (+)(S)-1 via the Pd(PPh<sub>3</sub>)<sub>4</sub>-catalyzed coupling with Bu<sup>1</sup>ZnCl, according to the Vermeer procedure<sup>3</sup> (Scheme 1). In fact, this Pd-promoted reaction was reported to proceed in a highly stereoselective fashion, at least with phenylzinc reagents and 3-phenyl- or 3-alkyl-1-bromoallenes.<sup>3</sup> On the other hand, by reaction with MeZnCl and Pd(PPh<sub>3</sub>)<sub>4</sub>, <sup>3</sup> (+)(S)-1 (23% ee) was also converted into (-)-4-methyl-2, 3-hexadiene, [ $\alpha$ ]<sup>20</sup><sub>D</sub> -0.20,

SCHEME 1




of known R configuration,<sup>4</sup> i.e. with inversion in the allenyl moiety. However, as the above catalytic reactions of (+)(S)-1 with  $\operatorname{Bu}^{i}$ ZnCl and MeZnCl proceed

1067

with a very high degree of racemization (see Scheme 1 and ref 4), and the assignment of the R configuration to (+)-2 conflict with the Runge "chirality functions approach", <sup>5</sup> it seemed use-ful to confirm our previous stereochemical hypothesis<sup>1</sup> by preparing (+)-2 via an independent route of known stereochemistry.

Scheme 2 summarizes here the synthesis of (+)-2 from (R)-3-methyl-1-pentyn-3-ol,(-)(R)-3, through the reaction of the corresponding propargylic acetate, (+)(R)-4, with organocuprates.<sup>6</sup>

SCHEME



(-)(R)-3 (84% ee)<sup>4</sup> was converted into (+)(R)-4 { 72% yield,  $[\alpha]_{D}^{20}+20.2$  (heptane)} by reaction, at -70°C in THF, with one equivalent of Bu<sup>n</sup>Li followed by addition of acetic anhydride.<sup>7</sup> Treatment of (+)(R)-4 (28 mmol) with [Bu<sup>i</sup>CuBr] MgCl·LiBr (56 mmol) in THF during 12 h at -70°C afforded pure (+)-2 (70% yield) having  $[\alpha]_{D}^{25}+19.6$  (hexane).

Similarly, (+)-2 { 55% yield,  $[\alpha]_D^{25}$ +9.9 (hexane) } was obtained from (+)(R)-4 by reaction with equimolar amounts of Bu<sup>i</sup><sub>2</sub>CuLi in diethyl ether at -70°C.

Since it has been well established<sup>8</sup> that organocopper(I) reagents induce an *anti-1,3-* substitution reaction in esters of secondary and tertiary propargylic carbinols, dextrorotatory 2 must have the S absolute configuration, in contrast with our previous assignment.<sup>1</sup> Therefore, the Ni- and Pd-promoted reactions of (+)(S)-1 with isobutylmetal compounds (Scheme 1) proceed with prevalent retention in the allenyl moiety and not with inversion.<sup>3</sup>

The comparison of our results with those of Vermeer<sup>3</sup> shows that the stereochemistry and also the mechanism of the transition-metal-catalyzed allene synthesis from 1-halogenoallenes and organometallic reagents seems to depend drastically on the nature and structure of the organometallic compound employed as well as on the structure of the allenic substrate.

## REFERENCES AND NOTES

- 1. A.M.Caporusso, F.Da Settimo, L.Lardicci, Tetrahedron Lett., 26, 5101 (1985).
- 2. A.M.Caporusso, A.Zoppi, F.Da Settimo, L.Lardicci, Gazz.Chim. Ital., 115, 293 (1985).
- 3. C.J.Elsevier, P.Vermeer, J.Org.Chem., 50, 3042 (1985), and references cited therein.
- 4. M.Bertrand, G.Gil, A.Kumar, Nouv.J.Chim., <u>4</u>, 69 (1980).
- 5. W.Runge in "The chemistry of ketenes, allenes, and related compounds", S.Patai Ed., Wiley, Chichester, 1980, Chapter 3. This approach has been proven to be a reliable and general method to deduce absolute configuration of open chain allenes, while the well known Lowe -Brewster rules are of restricted value for configuration assignment of trisubstituted allenes.<sup>4</sup>
- 6. T.L.McDonald, D.R.Regan, R.S.Brinkmeyer, J.Org.Chem., 45, 4740 (1980).
- 7. C.J.Elsevier, P.M.Stehouwer, H.Westmijze, P.Vermeer, J.Org.Chem., <u>48</u>, 1103 (1983).
- H.H.Mooiwer, C.J.Elsevier, P.Wijkens, P.Vermeer, Tetrahedron Lett., <u>26</u>, 65 (1985), and references cited therein.
- 9. This research was supported in part by Ministero della Pubblica Istruzione (Roma).

(Received in UK 16 December 1985)